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Abstract 

The surfaces of Demoulin constitute an important subclass of surfaces in projective differential 
geometry which arise in many seemingly unrelated geometric constructions. Analytically, they are 
described by a two-component system which coincides with the D c21 Toda lattice. We review some 3 
of the most important geometric properties of the Demoulin surfaces and construct a B~ickhind 
transformation which may be specialized to the well-known B~icklund transformation for the 
Tzitzeica equation governing affine spheres in affine geometry. © 1999 Elsevier Science B.V. All 
rights reserved. 
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1. Introduction 

In recent years, it has become evident that classical differential geometry constitutes 

a remarkable source of integrable systems. The best-known examples include constant 

Gaussian curvature, constant mean curvature and Bianchi surfaces in Euclidean geometry 

[3], affine spheres in affine geometry [24] and Willmore [28] and isothermic surfaces [5] 
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in conformal geometry. Others are contained in the theory of orthogonal and conjugate 

coordinate systems [7,10]. 
In the present paper, we focus on the less familiar case of surfaces in projective differential 

geometry which does not seem to have attracted attention in the context of integrability. 
As a first important example, we here analyse the so-called Demoulin surfaces M 2 ~ p3 

which are described analytically by the system 

1 1 
(ln p)sy = pq + - ,  (lnq)xy = pq + - .  (1) 

P q 

The latter turns out to represent the D~ 2) Toda lattice. The position vector r = (r ° : r I . 
r 2 : r 3) of the surface M 2 satisfies the linear system 

rx~ = pry + ~ ~ -- py r, 

ryy=qrx  + ~  ~ - q x  r, 

which is compatible if the functions p, q obey (1). The surfaces of Demoulin play a central 
role in projective differential geometry and arise in a number of natural geometric con- 

structions, some of which will be discussed here. For instance, they appear in the theory of 
envelopes of Lie quadrics associated with the surface M 2 and generate Laplace sequences 

of period 6 via the Plticker embedding in pS. 

After briefly recalling in Sections 2-4 the general approach to projective differential 

geometry of surfaces, we derive in Sections 5 and 6 the equations of motion for the so- 
called Wilczynski tetrahedral. These give rise to the 4 × 4 spectral problem 
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of system (1). In Section 7, we introduce a different second-order spectral problem 

~ O X X  m 

~Pxy : - - -  

q)yy - -  

--  -q--L~Ox + )~POy, Oxx = - P X  Ox + ).q~Py, 
q P 
1 1 

~o, 0.,-,, --  ~P, 
q P 
qy 1 Pv 1 
q ~o,, + -£P~Px, 0~.,, --  " O; + ;q~ox, 

. . .  p " 

(3) 

which is related to (2) through the Plticker correspondence discussed in Section 8. Geomet- 

rically, the spectral problem (3) makes manifest the fact that Demoulin surfaces generate 

Laplace sequences of period 6 via the Pliicker embedding in pS. Under the reduction 

p = q, ~0 = ~p, the linear system (3) specializes to the linear representation of the Tzitzeica 
equation 

1 
(lnh)xv = h h2,  hp  = - 1 ,  (4) 

governing affine spheres in affine differential geometry. In Sections 9 and 10, we derive 

a B~icklund transformation for system (1) which is, in geometric terms, generated by a 

W-congruence. 

2. S u r f a c e s  in  pro jec t ive  g e o m e t r y  

Based on [25-27], let us briefly recall the standard way of  defining surfaces M 2 in 

projective space p3 in terms of solutions of  a linear system 

rrx = Pry + rrr, ryy = qrx + x r ,  (5) 

where p, zr, q, X are functions o fx  and y. If  we cross-differentiate (5) and assume r, r,., r,., 

rxy to be independent, we arrive at the compatibility conditions 

7ryy + 2 p y X  + Pgy  = gxx + 2qxrr + qzrx, 

(qx + 2X)x = 2qpy  + pqy ,  (py + 2rr),. = 2pqx  + qp.,.  

These may be cast into the form [16, p. 120] 

pyyy - 2 p y W  - p W r  = qxxx - 2 q x V  - qV~,  (6a) 

Wr = 2qpy  + pqy ,  (6b) 

V,, = 2pqx  + qpx ,  (6c) 

by introducing W = qx + 2X, V = py + 27r. For any fixed solution p, q, V, W of (6a)-(6c) 

the linear system (5) is compatible and possesses exactly four linearly independent solutions 
r = (r 0, r 1 , r 2, r 3) which can be regarded as homogeneous coordinates of a surface in 

projective space. For our purposes, one may think of M 2 as a surface in a three-dimensional 
Euclidean space with position vector R = (r I / r  O, r 2 / r  O, r 3 / r ° ) .  If  we choose any other 
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four solutions ~ = (F °, ~ l, y2, 73) of  the same system (5) then the corresponding surface ~t  2 
with position vector/~ = (y l/y0, 72/?0, ~3/y0) constitutes a projective transform of M 2 so 

that any fixed solution p, q, V, W of equations (6a)-(6c) defines a surface M e uniquely up 

to projective equivalence. Moreover, a simple calculation yields 

Rxx = pRy  d- aRx,  Ryy = qRx + bRy 

(a = - 2 r ° / r  °, b = - 2 r ° / r  °) which implies that x, y are asymptotic coordinates of  

the surface M 2. In what follows, we assume that our surfaces are hyperbolic and the cor- 

responding asymptotic coordinates x, y are real. 2 Since Eqs. (6a)-(6c) specify a surface 
uniquely up to projective equivalence, they can be viewed as the 'Gauss-Codazzi '  equations 

in projective geometry. 

R e m a r k .  For any solution r = (r °, r I , r 2, r 3) o f  system (5) the determinant det(r, rx, ry, 

rxy) o f  the 4 × 4 matrix formed by the vectors r, rx , ry, rxy is independent o f  x ,  y and may 

be normalized to 1. 

Different types of  surfaces can be defined by imposing additional constraints on p,  q, V, W 

so that, in a sense, projective differential geometry is the theory of (integrable) reductions 
of  the underdetermined system (6a)-(6c). 

E xa mple  1. Isothermally asymptotic surfaces (see e.g. [4, p. 317]) are specified by the 
condition p = q, in which case Eqs. (6a)-(6c) assume the form of the stationary modified 

Veselov-Novikov (mVN) equation 

pyyy - 2 p y W  - p W  v = Pxxx - 2 p x V  - pVx,  

3 3 2 
Wx = ~(p2)y ,  Vy = ~ ( p  )x. 

This fact has been pointed out in [11]. Therein, it has also been shown that a similar class 

of  surfaces (the so-called diagonally cyclidic surfaces) arise in Lie sphere geometry. These 
are described by a different real form of the stationary mVN equation. 

Particular reductions of  system (6a)-(6c) corresponding to important classes of  surfaces 
were investigated in the classical context of  projective differential geometry. Some of them, 

namely projectively minimal, Godeaux-Rozet  and Demoulin surfaces, will be discussed 
below in the context of  modem integrability. 

3. Invariants of surfaces in projective geometry 

Even though the coefficients p, q, V, W define a surface M 2 uniquely up to projective 
equivalence via 

rxx = pry ÷ ½(V - py)r,  ryy = qrx + ½(W - qx)r, (7) 

2 The elliptic case is dealt with in an analogous manner by regarding x, y as complex conjugates. 
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it is not entirely correct to regard p, q, V, W as projective invariants. Indeed, the asymptotic 

coordinates x, y are only defined up to an arbitrary reparametrization of the form 

x* = f ( x ) ,  y* ~- g(y) ,  (8) 

which induces a scaling of the surface vector according to 

r* = ~ y ) r .  (9) 

Thus [4, p. 1], the form of Eq. (7) is preserved by the above transformation with the new 
coefficients p*, q*, V*, W* given by 

p .  = p g , / ( f , ) 2 ,  V*(f ' )  2 = V + S ( f ) ,  (10) 
q .  ~_ q f , / (g , )2 ,  W*(g') 2 = W + S(g),  

where S(. ) is the usual Schwarzian derivative, that is 

f ' "  3 ( £ ' ]  2 

s(U) - f '  2 \ f '  } " 

The transformation formulae (10) imply that the symmetric 2-form 

pq dx dy 

and the conformal class of the cubic form 

p dx 3 + q dy 3 

are absolute projective invariants. They are known as the projective metric and the Darboux 
cubic form, respectively, and play an important role in projective differential geometry 
since, in particular, they define a 'genetic' surface uniquely up to projective equivalence. 

Remark. The transformation properties o f  V and W suggest their interpretation as pro- 

jective connections (along the x-  and y-asymptotic lines, respectively). Let us consider, for  

instance, the ordinary differential equation 

go'" 3 (go,, 2 
go' 2 \ g o ' /  + v = o  11) 

in the variable x along the asymptotic line y = y0 = const. Eq. (11) is defined in an 

invariant way in view o f  the transformation properties of  V. Since any solution of  ( l 1) can 

be represented in the form 

go = u l / u  2, (12) 

where u j , u 2 are two arbitrary solutions o f  the linear equation 

Ux ~ = l Vu,  

the function go defines a projective structure along the asymptotic line y ---- yO _ const. Note 

that go is only determined up to linear fractional transformations go -+ (ago + b ) / (cgo + d). 
Thus, V and W define canonical projective structures along the respective asymptotic lines. 
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4. The Wilczynski moving tetrahedral 

Using (8)-(10), one can easily verify that the four points 

r, rl = r x - l q x r ,  r 2 = r v - l p Y r ,  
2 q  " 2 p  

(13) 
l p v  ( ~ p v q x l )  1 qxrv _ " + p q  r rl = rxy - ~ q -~ p r x  pq 2 

are defined in an invariant way, that is under the transformation formulae (8)-(10) they 
acquire a nonzero multiple which does not change them as points in projective space p3. 
These points form the vertices of the so-called Wilczynski moving tetrahedral [4]. Since 
the lines (r, rl ) and (r, r2) are tangential to the x- and y-asymptotic lines, respectively, the 
three points r, r l ,  r2 span the tangent plane of the surface M 2 at r. The line (rl, r2) lying 
in the tangent plane is known as the directrix of Wilczynski of the second kind. The line 
(r, r/) is transversal to M 2 and is known as the directrix of Wilczynski of the first kind. It 
plays the role of a projective 'normal'. We stress that in projective differential geometry 
there exists no unique choice of an invariant normal. This is in contrast with Euclidean and 
affine geometries in which the normal is canonically defined. Some of the best-known and 
most-investigated normals are those of Wilczynski, Fubini, Green, Darboux, Bompiani and 
Sullivan [4, p. 35] with the directrix of Wilczynski being the most commonly used. It is 
known that the directrix of Wilczynski intersects the tangent Lie quadric (cf. Section 5) of 
the surface M 2 at exactly two points r and r /so that both points lie on the Lie quadric and 

are canonically defined. The Wilczynski tetrahedral proves to be the most convenient tool 
in projective differential geometry. 

5. Projectively minimal, Godeaux-Rozet and Demoulin surfaces 

The metric pq dx dy is invariant under projective transformations and hence gives rise 
to the projective area functional 

f f p q d x d y .  (14) 

Its extrema are known as projectively minimal surfaces. The Euler-Lagrange equations for 
the functional (14) adopt the form [4, p. 319] 

pyyy - -  2pyW - PWv = O, 

qxxx - 2qx v - q Vx = O, 

Wx = 2qpy + pqy, 

Vy = 2pqx + qpx, 

(15a) 

(15b) 

(15c) 

(15d) 
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and may also be obtained by equating to zero both sides of  Eq. (6a). Multiplication of  (15a) 

by p and (15b) by q and subsequent integration results in 

W _  _ _  

V _ 

p 2 + p 2 '  (16a) 

q 2 ~q] - -  + q2 ' 
(16b) 

where q9 and 7t are arbitrary functions of  integration. Modulo interchanging ~0 and ~p, there 

are three cases to distinguish: 

Case 1 (General case). Both ¢p(x) and ap(y) are nonzero. In this case, we can always 

normalize ~0(x), ~p(y) to -4-1 by means of  the transformations (10). Let us assume, for 

instance, that ~0(x) = ~ ( y )  = 1. Insertion of  (16a) with ~o = 1 into (15c) and (16b) with 

= 1 into (15d) results in the system 

2 pX , [p(ln p)xv - pZq]v = p2 . 2 q y  , [q(lnq)xv - q2p]x = q2 

or, equivalently, 

A 2px  (lnp)xv. = P q + - - , p  Av. = p2 ' 

B 2qy  (lnq)xy = pq + --,q Bx = q2" 

(17) 

Case 2 (Surfaces of  Godeaux-Rozet  [4, p. 318]). In this case, q9 = 0, while ap is nonzero 

and may be normalized to 4-1. Here, we assume that ~p = 1. On inserting (16a) with ~0 = 0 

into (15c) and (16b) with ~p = 1 into (15d) we obtain 

[p(ln P)xv - p2q]y = 0, [q(ln q)xv - q2p]x = 2 q~' 
. . q2" 

Integration of  the first equation produces (ln P)xy = Pq + s ( x ) / p .  Hence, ifs (x) is nonzero, 

it may be reduced to 1 by means of  (10) so that the resulting equations take the form 

1 B 2qy 
(lnp)xv = pq + - ,  ( lnq)xy = pq + -- ,  Bx = q2" (18) 

p q 

Case 3 (Surfaces o f  Demoulin). In this case, both ~0 and ~p are zero and insertion of  (16a) 

and (16b) with ¢p = 7t = 0 into (15c) and (15d) yields 

[p( lnp)xy  - p2q]y = 0, [q(lnq)xy - q2p]x = O, 

so that 

(ln P)xy = pq + s(x____~) (lnq)xy = pq + 
t (y)  

P q 
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Once again, the analysis falls into three subcases depending on whether s, t are zero or not. 

Here, we consider only the generic situation s 5~ 0, t ~ 0 in which case s and t may be 
normalized to 1 and the resulting equations assume the form (1) 

1 1 
(In P)xy : Pq + - ,  (In q)xy -- Pq + - .  

P q 

In this form, the equations governing Demoulin surfaces have been set down in [12, p. 51]. 

The same system has been presented in [18] as a reduction of the two-dimensional Toda 

lattice (cf. Section 8). 

On use of the symmetry p ~ Zp, q ---> q/)~ of Eqs. (15a)-(15d), a parameter may be 

inserted into the linear equations (7) for projectively minimal surfaces. They become 

1 1 1 1 
rxx = Zpry + ~ ( V  - Zpy)r, ryy = -~qrx + ~ ( W  - -~qx)r. 

Remarkably, this observation was exploited by Demoulin [8] to establish in a purely geomet- 

ric manner the existence of Backlund transformations for Godeaux-Rozet and Demoulin 

surfaces and associated permutability theorems. Apparently, Demoulin did not formulate 
his results in terms of analytic expressions. In Section 9, a Toda lattice connection is used 
to derive explicitly a B~icklund transformation for Demoulin surfaces. 

Remark.  The specialization p = q reduces (1) to the Tzitzeica equation (4) which governs 

affine spheres in affine differential geometry [24]. 3 Geometrically this means that af-fine 
spheres lie in the intersection of  two different integrable classes of  projective surfaces, 
namely isothermally asymptotic and projectively minimal surfaces. 

Projectively minimal, Godeaux-Rozet and Demoulin surfaces also arise in the theory of 
envelopes of Lie quadrics associated with the surface M 2. For brevity, we only recall the 

necessary definitions. The details can be found in [4]. Thus, let us consider a point p0 on 
the surface M 2 and the x-asymptotic line passing through p0. Let us take three additional 

points pi, i --- 1, 2, 3 on this asymptotic line close to p0 and draw three y-asymptotic lines 
yi passing through pi. The three straight lines which are tangential to yi and pass through 

the points pi uniquely define a quadric Q containing them as rectilinear generators. As pi 
tend to p0, the quadric Q tends to a limiting quadric, the so-called Lie quadric of the surface 
M 2 at the point p0. Even though this construction depends on the initial choice of either 
the x- or the y-asymptotic line through p0, the resulting quadric Q is independent of that 
choice. Thus, we arrive at a two-parameter family of quadrics associated with the surface 
M 2. In terms of the Wilczynski tetrahedral, the parametric equation for Q is of the form [4, 
p. 311] 

Q = r l+Izr l  + vr2 +Izvr ,  

where/z, v are parameters. 

3 Affine spheres may be regarded as the analogues of spheres in affine differential geometry [2]. 
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Now, in the neighbourhood of a generic point p0 on M 2, the envelopes of the family of 

Lie quadrics consist of the surface M 2 itself and four, in general, distinct sheets. Surfaces 
of Godeaux-Rozet are characterized by the degenerate case of two distinct sheets while 
Demoulin surfaces are present if all four sheets coincide. Another interesting property of 
Demoulin surfaces is discussed below. Surfaces of Godeaux-Rozet and Demoutin have 
been investigated extensively in [8,13,22]. 

6. S u r f a c e s  o f  D e m o u l i n :  the  4 x 4 l inear  p r o b l e m  

In the case of Demoulin surfaces, p and q satisfy Eq. (1) while V and W read 

V -- 
qxx 1 ( ~ )  2 ( ~ ) *  W -  pyy 1 " 
q 2 ' p 2 

so that Eq. (7) for the position vector r assume the form 

r~.~ = p r y  + ~ 2 - p y  r ,  

r yy  = q r x  + ~ 2 - qx  r .  

(19) 

In terms of the Wilczynski tetrahedral r, r l ,  r2, r/(cf. Section 4), the linear system (19) is 
of first order in the derivatives of p and q. Indeed, using (1) and (19), we easily derive for 
r,  r l  , r2,  ~ the linear equations 

rl  

r2 

rl  

/'9 

V 

1 qx 
1 0 

2 q  

1 q~- 
0 p 

2 q  

1 1 q~- 
0 

2p 2 q 
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0 0 

2p 

1 py 0 1 
2 p  

1 1 py 0 
2q 2 p 

1 py 
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1 qx 

2 q  
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into which one can inject a parameter )~ if one exploits the symmetry x ~ x/)•, y ~ )~y 

of Eq. (1). It is noted that the matrices in (20) are trace-free and hence belong to the Lie 
algebra s l (4 ) .  

Remark (The dual Demoulin surface). On use of Eqs. (20), it is readily verified that the 
vector ~ = ~ r/satisfies the equations 

l ( p ~ x  l ( p x )  2 ) 
t'xx = qt'y + ~ ~ - -  -- qy i', 

l ( q ~ y  1 ( ~ )  2 ) 
l"yy = P~'x + -~ 2 - Px  I', 

which can be obtained from (19) by a transformation p --~ q, q --~ p, being a discrete 
symmetry of (1). Hence ~ can be viewed as the position vector of a 'dual' Demoulin surface 
~2 .  We recall that the point ~ is the intersection of the Wilczynski normal with the Lie 
quadric of the surface M 2 at the point r. In the case of affine spheres (p = q), r and ~ satisfy 
the same equations so that the original and the dual surfaces are equivalent in the sense of 
projective geometry. 

7. The 6 x 6 linear problem 

As can be verified directly, system (1) implies the compatibility of the following second- 
order linear system for a pair of functions ~o, ~: 

qx 
~Pxx = -- - -gOx + p lpy ,  (21a) 

q 

Px 
~xx  = - - - - ~ t x  + qqgy, (21b) 

P 

1 
~o~, . . . .  9, (21c) 

q 

1 
~Px~ . . . .  ~, (21d) 

P 

qY ~Oy ~Oyy = - -  -}- P~Px, (21e) 
q 

~yy = --PY ~ y  "-[- q~Ox. (21f) 
P 
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The latter reduces to the linear representation for the Tzitzeica equation in the case of  

p = q, ~0 = ~p. System (21a)-(21f) may be rewritten as the first-order 6 x 6 linear 
system 

0 1 0 0 0 0 

! ko2 0 0 P 0 0 0 ko2 

~3 0 0 0 n 0 0 ~°3 
q/4  = qy4 , 
q/5 0 0 0 q - 1  0 qj5 

t/j6 0 0 0 0 1 q/6 

p 0 0 0 0 - q  

(22) 
--PY 0 0 0 0 q 

qj2 1 0 0 0 0 0 
Py 

q/3 0 --1 ~ 0 0 0 ti/3 

tl/4 0 0 q 0 0 0 tP 4 
~5 1 ~5 

0 0 
1I-/6 O0 O0 O0 qo 1 0 1I/6 

q 

with ~v = q/5, ~p = q/2. Note that a 'spectral' parameter )~ may be inserted by means of 

the symmetry x ~ x/,k, y ~ ~.y of Eq. (1). It is also observed that the matrices in (22) 

are elements of  the so(3, 3) Lie algebra which is isomorphic to sl(4). 

The appearance of the two Moutard equations (21c) and (21d) for ~0 and ~p, respectively, 

indicates the existence of  a B/icklund transformation based on the classical Moutard trans- 

formation. In order to explore the geometric content of  such a B~icklund transformation, we 

first have to explain the relationship between the linear systems (20) and (21 a)-(2 If) which is 

rooted in the classical Pliicker correspondence between straight lines in p3 and points in pS. 

8. The Pliicker correspondence and the Godeaux sequence of a surface M 2 ~ p3 

Let us consider a line l in p3 passing through the points a and b with the homogeneous 
coordinates a = (a ° : a 1 : a  2 : a  3) and b = (b ° : b I : b e : b3). With the line I we associate 

a point a A b in projective space p5 with the homogeneous coordinates 

a A b = (POl : P02 : P03 : P23 : P31 : PI2), (23) 

where 

a j 
P i j = d e t ( ; i  bj ) .  (24) 
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The coordinates Pij satisfy the well-known quadratic Plticker relation 

polP23 + p02P31 + P03P12 = 0. (25) 

Instead of a and b we may consider arbitrary linear combinations thereof without changing 

a /x  b as a point in pS. Hence, the map (23)-(24) constitutes a well-defined Plticker corre- 
spondence l(a, b) e-~ a A b between lines in p3 and points on the Pliicker quadric in pS. If  

a,  b, c are points in p3 and x is a scalar, the following properties hold: 

a /x  b = - b  A a, a /x  a = 0 (SKEW-SYMMETRY), 

K (a A b) = (x a) A b = a A (x b) (ASSOCIATIVITY), 

(a + c) A b : a A b + c /x  b (DISTRIBUTIVITY), 

(a A b) '  = a '  A b + a A b '  (LEIBNIZ RULE). 

The Pliicker correspondence plays an important role in the projective differential geome- 

try of  surfaces and often sheds some new light on those properties of  surfaces which are not 
'visible '  in p3 but acquire a precise geometric meaning only in pS. Thus, let us consider a 
surface M 2 6 p3 with position vector r = (r ° : r '  : r 2 : r 3) satisfying Eq. (5): 

rxx = pry + rcr, ryy = qrx + xr. 

Since two pairs of  points (r, rx) and (r, ry) generate two lines in p3 which are tangential 
to the x- and y-asymptotic lines, respectively, the formulae 

U : r x A r ,  V : r y A r  

define the images of  these lines under the Pliicker embedding. Hence, with any surface 
M 2 ~ p3 there are canonically associated two surfaces U(x, y) and V(x, y) in p5 lying 

on the Plticker quadric (25). In view of the formulae 

Ux=pV, Vy=qU, 

we conclude that the line in p5 passing through a pair of  points (U, V) can also be generated 

by the pair of  points (U, Ux) (and hence is tangential to the x-coordinate line on the surface 
U) or by a pair of  points (V, Vy) (and hence is tangential to the y-coordinate line on the 

surface V). Consequently, the surfaces U and V are two focal surfaces of  the congruence 

of straight lines (U, V) or, equivalently, V is the Laplace transform of U with respect to x 
and U is the Laplace transform of V with respect to y. We emphasize that the x- and y- 
coordinate lines on the surfaces U and V are not asymptotic but conjugate. Continuation of 
the Laplace sequence in both directions, that is taking the x-transform of V, the y-transform 
of U, etc., leads, in the generic case, to an infinite Laplace sequence in p5 known as the 
Godeaux sequence of  a surface M 2 [4, p. 344]. The surfaces of  the Godeaux sequence carry 
important geometric information about the surface M 2 itself. 

The case of  a closed, i.e. periodic Godeaux sequence is particularly interesting. It turns 
out, that the only surfaces M 2 e p3 for which the Godeaux sequence is of  period 6 (the 
value 6 turns out to be the least possible) are the surfaces of  Demoulin [4, p. 360]. This 
result may be regarded as an equivalent geometric description of Demoulin surfaces. 
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In modern terminology, the classical Laplace sequence of  conjugate nets [6] is governed 

by the two-dimensional Toda lattice [ 17] 

(ln h,7)xv = - h n - 1  q- 2hn - hn+l .  

There exists a Toda chain associated with any of the Kac-Moody Lie algebras [1]. For 

• (1) generates a Toda lattice of  period 6: instance, the affine Lie algebra A 5 

(lnht)xv = - h o + 2 h l - h 2 ,  (lnh2)xr = - h i  + 2 h 2 - h 3 ,  

(ln h3)x, = - h 2  + 2h3 - h4, (ln h4)x,. = - h 3  + 2h4 - hs, (26) 

(ln hs),y = - h 4  + 2h5 - h6, (ln h6)xv = - h 5  -+- 2h6 - hi.  

Hence, the above characterization of Demoulin surfaces suggests that Eq. (1) can be em- 

bedded in (27). This is indeed the case. The appropriate reduction corresponds to the D (2' 3 
subalgebra and is given by h6 = h l, h5 = h2, h4 = h3. System (27) now specializes to 

(lnhl)xv = - h 2  + h i ,  (lnh2)xy = - h i  +2h2  - h 3 ,  (lnh3)xv = - h 2  + h 3 .  

It is readily verified that (ln h 1 hzh3)xv = 0 so that h2 = 1 / h I h3 without loss of  generality. 
Hence, we end up with the system 

1 1 
( lnhj )x ,  = hi -- - -  (ln h3)xv = h3 - - -  

h l h 3 '  h lh3 '  

which coincides with (1) if we make the identifications p = - l / h 1 ,  q = - 1 / h 2 .  We note 

that the linear system (21a)-(21f) is equivalent to the linear representation of  the D~ 2) Toda 

lattice [20]. 

The Plficker construction also gives the relationship between the linear systems (20) and 

(21 a)-(21 f). A straightforward calculation reveals that (20) transforms into (21 a)-(21 f) if 

one sets 

t p =  l~(r I Ar2 + r A t / ) ,  gr = ~(r2 mr1 + r  mr/).  (27) 

Here, it is convenient to be aware of  the formulae 

~0x = rl A r/, (28a1 

1 
q0y= ~qr2  A r, (28b) 

gS' = r2 A O, (28c) 

1 
~P, = ~pprl A r. (28d) 

Insertion of  the expressions for r l ,  r2, r /as given by (13) into (27) and (28b) (28d) produces 

( ) 1 q ry A r  , ~ov = ~qry A r, 9) = - - ~  \ q / ~ 

( 1 p r x A r  , 7 r r = ~ p r x A r "  ~ = - ~ \  p / ,  
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If  we recall that rx A r = U, ry A r = V, we can bring these equations into the form 

q ( V )  , = p ( U )  , : 1 = 1 
, ,   qV, 4,  pU. 

Geometrically, these formulae imply that ~0 is the Laplace transform of V in x-direction, 

while ~p is the Laplace transform of U in y-direction. Thus, our choice of  variables is quite 

natural: both ~o and ~ belong to the Godeaux sequence of  the Demoulin surface M 2. We 

emphasize that, unlike U and V, ~p and 7z do not lie on the Plticker quadric. 

9. A Bi icklund trans format ion  act ing on D e m o u l i n  surfaces  

In order to derive a B~icklund transformation for Demoulin surfaces, it turns out conve- 

nient to consider the linear representation of  the Demoulin system 

1 1 
(ln h)xy = h - - -  h - 

hk '  q '  

1 1 
( l n k ) x v = k  hk ' k = - - ,  p 

in the form 

hx 1 

= T x + y , 

kx 1 

~0xy = h~o, 

~xy =k~, 
hv 11 

l/fyy = lpy-'[- ~ ~q9 x . 

(29) 

(30a) 

(30b) 

(30c) 

(30d) 

(30e) 

(30f) 

The linear system (21a)-(21f) is retrieved in the case )~ = - 1 .  We focus on the Moutard 

equations (30c) and (30d) and state the classical Moutard transformation [ 19]: 

T h e o r e m  1. The Moutard equations 

~Oxy = h~0, ~xv = k ~  (31) 

are form-invariant under the transformation 

S 
! - -  m 

~o-+~o -- oO, 

T 

~ o '  

h --+ h'  = h - 2(ln ~O°)xy, 

k --+ k' = k - 2(ln 7Z°)xy, 
(32) 
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where tp °, ~po is another scalar pair o f  solutions of(31) and the bilinear potentials S, T are 

defined by the relations 

s . ,  = & v . , -  - & v ,  77,. = - 

&, = ~o°~0 - ~0°~0,, 7", = ~{~p - ~p0~p,, (33) 

which are compatible modulo (31). 

In general, the structure of the remaining equations of (30a)-(30f) is not preserved by the 
Moutard transformation. However, the latter may be specialized according to the following: 

Lemma 1. I f  ~o, 7t and ~o °, ~o are solutions o f  the linear system (30a)-(30f) with parame- 

ters Z and lz respectively, then the integration constants in S and T may be chosen in such 

a way that 

S = ~ ~o ° ~o + fl o O o + y - ~  ~O y + ~ ~o. v + p Oy+cr  O.v, 

where the constants ~, fl, V, 3, p and ~ are given by 

Z2 + #2 2Z/z 
ot--,k_~_bt2, p = c r = - 3  Z 2 _ / z  2, 

Furthermore, the constraint 

(~oO)2 _ 2 ~°°~°° = (~o)2 _ 2 ~.o~o 
h k 

is admissible. 

2Z 2 2/a. 2 
y - -  Z2_/a2, 3 = - Z 2 _ / ~ 2 .  

(34") 

It may be directly verified that S and T as given in the above lemma indeed satisfy the 
defining relations (33). The difference of the left-hand and right-hand sides of the constraint 
(34) constitutes a first integral of the linear system (30a)-(30f) which reflects the fact that 
the norm of the vector (ko I, q/2, ~3, qj4, qjs, t/.t6)T in (22) is constant with respect to the 

Killing-Cartan metric of so(3, 3). Lemma 1 now puts us in a position to formulate the 
pivotal result of this section. 

Theorem 2. The Demoulin system (29) and its linear representation (30a)-(30f) are invari- 

ant under the Moutard-~pe transformation (32) with the specifications given in Lemma 1. 

The action of the above B~icklund transformation on the surface M 2 may be derived 
in a purely algebraic manner. Indeed, the primed version of the Pliicker embedding (27) 
and (28a)-(28d) constitutes quadratic equations for the Wilczynski tetrahedral r', r'j, r'~, rl' 

which, up to a sign, possess a unique solution. A tedious but straightforward calculation 
results in the following linear action of the B~icklund transformation: 
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T h e o r e m  3. If r is the position vector of a Demoulin surface M 2 then another Demoulin 
surface M 2t is given by 

r' = fOr + f l r l  + f2r2 

with coefficients 

and 

0 0 
f 0  1/zgo 0 + ~0 f l  qgy f 2  ~Ox 

--  2 r ' = / z  ~---(, = k--( 

(35) 

i (¢p0)2 qoOfpO C = - 2 , ,L-~ (36) 

The surfaces M 2 and M 2' are the focal surfaces of the W-congruence formed by the lines 
(r', r). 

I (~r0) 2 ~r0~f0 - - 2 ~  -y-~- . 

In the above theorem, r '  has been scaled by an irrelevant constant factor. In order that 

the lines ( i ,  r) form a W-congruence [10] two properties must hold. On the one hand, the 

asymptotic lines have to correspond on the surfaces M e and M 2t. By construction, this is 

indeed the case. On the other hand, by virtue of  the definition of  the Wilczynski tetrahedral, 
the new surface vector t s takes the form 

r t = g°r + glrx + g2ry. 

Thus, if we identify a surface in p3 with a surface in Euclidean space with position vector 
R = ( r l / r  °, r2/r O, r3/r°), we obtain the transformation law 

glr°Rx + g2r°Ry 
R' = R +  

g°r° + glr° + g2rO' 

which implies that R t - R is tangential to M 2. Moreover, since the Moutard transformation 

and its inverse have the same form, the line segment R ~ - R is also tangential to the second 
surface M 2~. Consequently, the lines (t a, r) form a W-congruence with M 2 and M 2' being 

its focal surfaces. 

10. ' O n e - s o l i t o n '  D e m o u l i n  sur faces  

The aim of  this section is to construct the surfaces associated with the one-soliton solution 
of  the Demoulin system (29). These may be generated by means of  the B~icklund transfor- 

marion derived in the previous section acting on the surface associated with the trivial seed 
solution h ---- k = 1. However, it is instructive to digress for a moment and consider the 
bilinear form of the Demoulin system. Thus, if we set 

h = C  c - k = -~ , 
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the Demoulin system may be brought into the form 

c2(lnc)xy + ab = a2(lna)xy + ac c2(lnc)xy + ab b2(lnb)xy + bc 

c 2 a 2 , c 2 b 2 

Since one of  the functions a, b or c is arbitrary, the above system may be separated into the 

three bilinear equations 

DxDva  . a  = 2 ( a  2 - ac),  D x D y b .  b = 2(b 2 - bc), D x D y c .  c = 2(c 2 - ab), 

(37) 

where DxDy is a Hirota bilinear operator [14], that is D x D y f .  f = 2 ( f f ~ y -  f ~ f y ) .  The 

simplest Hirota ansatz 

a =  l + ~ ] e ' l + ~ 2 e  2~, b =  l + f l l e ~ + f l 2 e  2~, c =  l + g l e n + y 2 e  2~, 

r / =  Six + S2y, 

produces a set of algebraic equations for the constant coefficients a I . . . . .  $2 which tums out 

to admit two solutions. The first solution leads to h = k and corresponds to the one-soliton 

solution of the Tzitzeica equation. The associated affine spheres have been generated and 

displayed in [21,23]. 

The second solution (h 7~ k) is given by 

a = 4e 2~ cosh 2 or, b = 4e 2a sinh 2 or, c = 2e 2~ cosh(2~),  

where ot = ( xx  + y / r ) / 2 ,  x = const, without loss of  generality. Hence, the solution of  the 

Demoulin system (29) reads 

1 1 1 1 
h = 1 k = 1 + (38) 

2 cosh 2 or' 2 sinh 2 ct 

It represents two travelling waves (a hump and a trough) propagating at the same speed. 

Both h and k are nonzero but k diverges at ~ = 0. This implies that p = - 1 / h  and 

q = - 1 / k  are nonsingular. They are displayed in Fig. 1. It is emphasized that even 

though q vanishes at ct = 0, the coefficients in the 'Gauss-Weingar ten '  equations (19) 

are nonsingular. 

The above one-soliton solution is readily generated by means of  the B~icklund transfor- 

mation (32). If  we start with the seed solution h = k = 1, a particular solution of the linear 

system (30a)-(30f) with parameter /z  = K 3 is given by 

¢pO = ei¢/cosh or, ~o  = _ei/3 sinh or, 

where fl = x /3 ( xx  - y / x ) / 2 .  In this case, the constraint (34) is identically satisfied with 

/-" ~ e  i~A, A - =  ~ ,  
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alpha 

/ - 0 . 5  ",, 

o-° - / / / " /  q _°o .o -"  
• r . . . . .  -- . . . . . .  -1 . . . . . . . . . . . . . . . .  

p 

Fig. t. The Demoulin one-soliton solution. 

and h' ,  k'  coincide with the one-soliton solution (38). Up to a linear transformation, the 

seed surface vector reads it,) e-(X+y) 
r ~--- 

e (x+y)/2 cos y 

~, e (x+y)/2 sin g 

,/5 
y = T ( x  - y) 

so that the Biicklund transformation (35) delivers the new real position vector (modulo a 

linear transformation) 

rt = 1 
A 

Jc 3 cosh ~ - sinh ot '~ 

J 
e -(x+y) (K cosh ot + sinh a )  

e(X+Y)/2[(x coshoe + sinhoe) sin y + s/3(K coshot - s i nha )  c o s y ]  " 

e (X+y)/2 [(K cosh o~ + sinh a )  cos y - ,¢/3(x cosh oe - sinh or) sin y]  

The case of  the 's tat ionary'  one-soliton solution, that is Jc = 1, is of  particular interest 

since in Euclidean or affine geometry, stationary one-soliton surfaces tend to be surfaces of  

revolution. Examples include the pseudo-sphere [9] and the simplest Tzitzeica surface of  

revolution [23]. In the present context, one may show that the only Demoulin surfaces of  

revolution are affine spheres. These have been discussed by Jonas in [15]. A typical affine 

sphere of  revolution is shown in Fig. 2. 
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Fig. 2. An affine sphere of revolution. 

It turns out that for r = 1 the solutions r '° and r !l coincide. In order to obtain a fourth 

linearly independent solution we replace r !l by 

r !1 _ r !0 
l im - -  
K--.+I K -- 1 

Thus, l 'Hospi ta l ' s  rule delivers the position vector 

r ! =  1 e -~  / 3 + ( e  - ~ - 3 e  ~)coshot  

A e 2~ sin/3 + Vr3 cos fl ' 

e 2a cos/3 -- x/~ sin/3 

which implies that the surface vector in Euclidean space is given by 

g ! 

2 
~ / 3  + (e -~  - 3e ~) cosh ol 

e 3~ sin/3 + v/3e cr cos/3 

e 3a cos/3 - V3e ~ sin/~ 

(39) 

The parametrization (39) shows that the surface is generated by the curve R = R ( a ,  fl = O) 

which is uniformly rotated and translated. This 'stationary one-soli ton'  Demoulin surface 

is depicted in Fig. 3 in terms of  a and/3. 
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Fig. 3. A Demoulin one-soliton surface. 
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